Artwork

コンテンツは Real Python によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Real Python またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal
Player FM -ポッドキャストアプリ
Player FMアプリでオフラインにしPlayer FMう!

Narwhals: Expanding DataFrame Compatibility Between Libraries

1:00:33
 
シェア
 

Manage episode 445749611 series 2637014
コンテンツは Real Python によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Real Python またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal

How does a Python tool support all types of DataFrames and their various features? Could a lightweight library be used to add compatibility for newer formats like Polars or PyArrow? This week on the show, we speak with Marco Gorelli about his project, Narwhals.

Narwhals is a project aimed at library maintainers rather than end users. We discuss how the added compatibility benefits users by supporting modern features like lazy evaluation. We cover several projects Marco has been working with to implement Narwhals, including Altair, scikit-lego, and Ibis.

We also discuss how Marco started contributing to open-source projects. Marco has contributed to both pandas and Polars, which helps explain his interest in growing compatibility between libraries. He also offers advice on making your first contribution.

This episode is sponsored by CodeRabbit.

Course Spotlight: Differences Between Python’s Mutable and Immutable Types

In this video course, you’ll learn how Python’s mutable and immutable data types work internally and how you can take advantage of mutability or immutability to power your code.

Topics:

  • 00:00:00 – Introduction
  • 00:02:02 – Euro SciPy 2024 and sprints
  • 00:04:04 – How did you get involved in open source?
  • 00:07:18 – Finding a good issue to get started
  • 00:09:25 – Discord and open-source projects
  • 00:11:12 – Who would you describe Narwhals?
  • 00:16:47 – Working on Polars
  • 00:19:17 – Apache Arrow and a data interchange protocol
  • 00:22:55 – Sponsor: CodeRabbit
  • 00:23:55 – Digging into eager vs lazy
  • 00:27:04 – Ibis DataFrame library
  • 00:28:57 – What do libraries need from Narwhals?
  • 00:34:57 – The scikit-lego library
  • 00:37:15 – Video Course Spotlight
  • 00:38:45 – Other libraries interested in Narwhals
  • 00:41:56 – Compatibility policy
  • 00:45:18 – What should an end user expect?
  • 00:46:32 – Have other projects that attempted this?
  • 00:47:54 – Keeping the project light and pure Python
  • 00:49:32 – Contributors and how to get involved
  • 00:54:42 – What are you excited about in the world of Python?
  • 00:57:18 – What do you want to learn next?
  • 00:59:05 – How can people follow your work online?
  • 00:59:27 – Thanks and goodbye

Show Links:

Level up your Python skills with our expert-led courses:

Support the podcast & join our community of Pythonistas

  continue reading

233 つのエピソード

Artwork
iconシェア
 
Manage episode 445749611 series 2637014
コンテンツは Real Python によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Real Python またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal

How does a Python tool support all types of DataFrames and their various features? Could a lightweight library be used to add compatibility for newer formats like Polars or PyArrow? This week on the show, we speak with Marco Gorelli about his project, Narwhals.

Narwhals is a project aimed at library maintainers rather than end users. We discuss how the added compatibility benefits users by supporting modern features like lazy evaluation. We cover several projects Marco has been working with to implement Narwhals, including Altair, scikit-lego, and Ibis.

We also discuss how Marco started contributing to open-source projects. Marco has contributed to both pandas and Polars, which helps explain his interest in growing compatibility between libraries. He also offers advice on making your first contribution.

This episode is sponsored by CodeRabbit.

Course Spotlight: Differences Between Python’s Mutable and Immutable Types

In this video course, you’ll learn how Python’s mutable and immutable data types work internally and how you can take advantage of mutability or immutability to power your code.

Topics:

  • 00:00:00 – Introduction
  • 00:02:02 – Euro SciPy 2024 and sprints
  • 00:04:04 – How did you get involved in open source?
  • 00:07:18 – Finding a good issue to get started
  • 00:09:25 – Discord and open-source projects
  • 00:11:12 – Who would you describe Narwhals?
  • 00:16:47 – Working on Polars
  • 00:19:17 – Apache Arrow and a data interchange protocol
  • 00:22:55 – Sponsor: CodeRabbit
  • 00:23:55 – Digging into eager vs lazy
  • 00:27:04 – Ibis DataFrame library
  • 00:28:57 – What do libraries need from Narwhals?
  • 00:34:57 – The scikit-lego library
  • 00:37:15 – Video Course Spotlight
  • 00:38:45 – Other libraries interested in Narwhals
  • 00:41:56 – Compatibility policy
  • 00:45:18 – What should an end user expect?
  • 00:46:32 – Have other projects that attempted this?
  • 00:47:54 – Keeping the project light and pure Python
  • 00:49:32 – Contributors and how to get involved
  • 00:54:42 – What are you excited about in the world of Python?
  • 00:57:18 – What do you want to learn next?
  • 00:59:05 – How can people follow your work online?
  • 00:59:27 – Thanks and goodbye

Show Links:

Level up your Python skills with our expert-led courses:

Support the podcast & join our community of Pythonistas

  continue reading

233 つのエピソード

Все серии

×
 
Loading …

プレーヤーFMへようこそ!

Player FMは今からすぐに楽しめるために高品質のポッドキャストをウェブでスキャンしています。 これは最高のポッドキャストアプリで、Android、iPhone、そしてWebで動作します。 全ての端末で購読を同期するためにサインアップしてください。

 

クイックリファレンスガイド