Artwork

コンテンツは Ludwig-Maximilians-Universität München and MCMP Team によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Ludwig-Maximilians-Universität München and MCMP Team またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal
Player FM -ポッドキャストアプリ
Player FMアプリでオフラインにしPlayer FMう!

Haecceities and Mathematical Structuralism

54:28
 
シェア
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 13, 2022 23:55 (2y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 293117470 series 2929680
コンテンツは Ludwig-Maximilians-Universität München and MCMP Team によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Ludwig-Maximilians-Universität München and MCMP Team またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal
Christopher Menzel (Texas A&M University) gives a talk at the MCMP Colloquium (18 June, 2014) titled "Haecceities and Mathematical Structuralism". Abstract: It is well-known that some earlier versions of mathematical structuralism (notably from Resnik and Shapiro) appeared to be committed to a rather strong form of the Identity of Indiscernibles (II) that is falsified by the existence of structures like the complex field that admit of non-trivial automorphisms, or symmetries. In light of more recent work (notably, by MacBride, Ketland, Shapiro, Ladyman, and Leitgeb and Ladyman), it is widely accepted that the mathematical structuralist is not committed to II and that, in fact, the principle can be rejected outright on robustly structuralist grounds. I accept a qualified form of this view but I don't think the issue is as cut and dried as it might appear. In a 2007 Analysis article, José Bermúdez suggests that a strong version of II is still in play for the structuralist that can meet the challenge of non-trivial symmetries. The key to the proposal (as I will interpret it) lies in allowing identity properties, or haecceities, like being identical to c (for an arbitrary complex number c, say) to count as structural properties. Typically, structuralists dismiss such properties as obviously non-structural. I will argue to the contrary that haecceities can be viewed as properly structural and, in some circumstances, can serve as legitimate properties for discerning otherwise indiscernible “positions” in structures. Drawing on the model theoretic concept of an expansion, I base my argument on a notion of discernibility rooted intuitively in “underlying structure”. This notion turns out to be equivalent to a notion of discernibility identified in some previous studies but proves useful in focusing when haecceities can legitimately be invoked and why Bermúdez's proposed version of II falls short of a fully satisfactory structuralist principle.
  continue reading

22 つのエピソード

Artwork
iconシェア
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 13, 2022 23:55 (2y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 293117470 series 2929680
コンテンツは Ludwig-Maximilians-Universität München and MCMP Team によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Ludwig-Maximilians-Universität München and MCMP Team またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal
Christopher Menzel (Texas A&M University) gives a talk at the MCMP Colloquium (18 June, 2014) titled "Haecceities and Mathematical Structuralism". Abstract: It is well-known that some earlier versions of mathematical structuralism (notably from Resnik and Shapiro) appeared to be committed to a rather strong form of the Identity of Indiscernibles (II) that is falsified by the existence of structures like the complex field that admit of non-trivial automorphisms, or symmetries. In light of more recent work (notably, by MacBride, Ketland, Shapiro, Ladyman, and Leitgeb and Ladyman), it is widely accepted that the mathematical structuralist is not committed to II and that, in fact, the principle can be rejected outright on robustly structuralist grounds. I accept a qualified form of this view but I don't think the issue is as cut and dried as it might appear. In a 2007 Analysis article, José Bermúdez suggests that a strong version of II is still in play for the structuralist that can meet the challenge of non-trivial symmetries. The key to the proposal (as I will interpret it) lies in allowing identity properties, or haecceities, like being identical to c (for an arbitrary complex number c, say) to count as structural properties. Typically, structuralists dismiss such properties as obviously non-structural. I will argue to the contrary that haecceities can be viewed as properly structural and, in some circumstances, can serve as legitimate properties for discerning otherwise indiscernible “positions” in structures. Drawing on the model theoretic concept of an expansion, I base my argument on a notion of discernibility rooted intuitively in “underlying structure”. This notion turns out to be equivalent to a notion of discernibility identified in some previous studies but proves useful in focusing when haecceities can legitimately be invoked and why Bermúdez's proposed version of II falls short of a fully satisfactory structuralist principle.
  continue reading

22 つのエピソード

Tất cả các tập

×
 
Loading …

プレーヤーFMへようこそ!

Player FMは今からすぐに楽しめるために高品質のポッドキャストをウェブでスキャンしています。 これは最高のポッドキャストアプリで、Android、iPhone、そしてWebで動作します。 全ての端末で購読を同期するためにサインアップしてください。

 

クイックリファレンスガイド