Artwork

コンテンツは EDGE AI FOUNDATION によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、EDGE AI FOUNDATION またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal
Player FM -ポッドキャストアプリ
Player FMアプリでオフラインにしPlayer FMう!

Revolutionizing TinyML: Integrating Large Language Models for Enhanced Efficiency

27:06
 
シェア
 

Manage episode 450165043 series 3574631
コンテンツは EDGE AI FOUNDATION によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、EDGE AI FOUNDATION またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal

Send us a text

Unlock the future of TinyML by learning how to harness the power of large language models, as we sit down with Roberto Morabito to dissect this intriguing technological convergence. Discover how the collaborative efforts with Eurocom and the University of Helsinki are shaping a groundbreaking framework designed to elevate TinyML's lifecycle management. We promise to unravel the complexities and opportunities that stem from integrating these technologies, focusing on the essential role of prompt templates and the dynamic challenges posed by hardware constraints. Through a proof-of-concept demonstration, we bring you invaluable insights into resource consumption, potential bottlenecks, and the exciting prospect of automating lifecycle stages.
Our conversation ventures into optimizing language models for end devices, delving into the transformative potential of Arduinos and single-board computers in enhancing efficiency and slashing costs. Roberto shares his expertise on the nuances of model conversion across varying hardware capabilities, revealing the impact this has on success rates. The episode crescendos with a compelling discussion on automating industrial time series forecasting, underscoring the critical need for adaptive solutions to maintain accuracy and efficiency. Through Roberto's expert insights, listeners are invited to explore the forefront of technology that is poised to revolutionize industrial applications.

Support the show

Learn more about the EDGE AI FOUNDATION - edgeaifoundation.org

  continue reading

1. Revolutionizing TinyML: Integrating Large Language Models for Enhanced Efficiency (00:00:00)

2. Large Language Models in TinyML Framework (00:00:23)

3. Optimizing Language Models for End Devices (00:18:09)

4. Industrial Time Series Forecasting Automation (00:25:45)

23 つのエピソード

Artwork
iconシェア
 
Manage episode 450165043 series 3574631
コンテンツは EDGE AI FOUNDATION によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、EDGE AI FOUNDATION またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal

Send us a text

Unlock the future of TinyML by learning how to harness the power of large language models, as we sit down with Roberto Morabito to dissect this intriguing technological convergence. Discover how the collaborative efforts with Eurocom and the University of Helsinki are shaping a groundbreaking framework designed to elevate TinyML's lifecycle management. We promise to unravel the complexities and opportunities that stem from integrating these technologies, focusing on the essential role of prompt templates and the dynamic challenges posed by hardware constraints. Through a proof-of-concept demonstration, we bring you invaluable insights into resource consumption, potential bottlenecks, and the exciting prospect of automating lifecycle stages.
Our conversation ventures into optimizing language models for end devices, delving into the transformative potential of Arduinos and single-board computers in enhancing efficiency and slashing costs. Roberto shares his expertise on the nuances of model conversion across varying hardware capabilities, revealing the impact this has on success rates. The episode crescendos with a compelling discussion on automating industrial time series forecasting, underscoring the critical need for adaptive solutions to maintain accuracy and efficiency. Through Roberto's expert insights, listeners are invited to explore the forefront of technology that is poised to revolutionize industrial applications.

Support the show

Learn more about the EDGE AI FOUNDATION - edgeaifoundation.org

  continue reading

1. Revolutionizing TinyML: Integrating Large Language Models for Enhanced Efficiency (00:00:00)

2. Large Language Models in TinyML Framework (00:00:23)

3. Optimizing Language Models for End Devices (00:18:09)

4. Industrial Time Series Forecasting Automation (00:25:45)

23 つのエピソード

すべてのエピソード

×
 
Loading …

プレーヤーFMへようこそ!

Player FMは今からすぐに楽しめるために高品質のポッドキャストをウェブでスキャンしています。 これは最高のポッドキャストアプリで、Android、iPhone、そしてWebで動作します。 全ての端末で購読を同期するためにサインアップしてください。

 

クイックリファレンスガイド

探検しながらこの番組を聞いてください
再生