The Role of Kemeny's Constant in Properties of Markov Chains
Manage episode 155956009 series 1172274
コンテンツは Hamilton Institute によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Hamilton Institute またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal。
Speaker: Prof. J. J. Hunter Abstract: In a finite m-state irreducible Markov chain with stationary probabilities {\pi_i} and mean first passage times m_{ij} (mean recurrence time when i=j) it was first shown, by Kemeny and Snell, that \sum_{j=1}^{m}\pi_jm_{ij} is a constant, K, not depending on i. This constant has since become known as Kemeny’s constant. We consider a variety of techniques for finding expressions for K, derive some bounds for K, and explore various applications and interpretations of theseresults. Interpretations include the expected number of links that a surfer on the World Wide Web located on a random page needs to follow before reaching a desired location, as well as the expected time to mixing in a Markov chain. Various applications have been considered including some perturbation results, mixing on directed graphs and its relation to the Kirchhoff index of regular graphs.
…
continue reading
63 つのエピソード