Artwork

コンテンツは Daniel Miessler によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Daniel Miessler またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal
Player FM -ポッドキャストアプリ
Player FMアプリでオフラインにしPlayer FMう!

A Possible Path to ASI

10:52
 
シェア
 

Manage episode 475921971 series 3012020
コンテンツは Daniel Miessler によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Daniel Miessler またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal

The conversation around AGI and ASI is louder than ever—but the definitions are often abstract, technical, and disconnected from what actually matters. In this episode, I break down a human-centered way of thinking about these terms, why they’re important, and a system that could help us get there.

I talk about:

• A Better Definition of AGI and ASI
Instead of technical abstractions, AGI is defined as the ability to perform most cognitive tasks as well as a 2022 U.S.-based knowledge worker. ASI is intelligence that surpasses that level. Framing it this way helps us immediately understand why it matters—and what it threatens.

• Invention as the Core Output of Intelligence
The real value of AGI and ASI is their ability to generate novel solutions. Drawing inspiration from the Enlightenment, we explore how humans innovate—and how we can replicate that process using AI, automation, and structured experimentation.

• Scaling the Scientific Method with AI
By building systems that automate idea generation, recombination, and real-world testing, we can massively scale the rate of innovation. This framework—automated scientific iteration—could be the bridge from human intelligence to AGI and beyond.

Subscribe to the newsletter at:
https://danielmiessler.com/subscribe

Join the UL community at:
https://danielmiessler.com/upgrade

Follow on X:
https://x.com/danielmiessler

Follow on LinkedIn:
https://www.linkedin.com/in/danielmiessler
Chapters:

00:00 - Why AGI and ASI Definitions Should Be Human-Centric
01:55 - Defining AGI as a 2022-Era US Knowledge Worker
03:04 - Defining ASI and Why It’s Harder to Conceptualize
04:04 - The Real Reason to Care: AGI and ASI Enable Invention
05:04 - How Human Innovation Happens: Idea Collisions and Enlightenment Lessons
06:56 - Building a System That Mimics Human Idea Generation at Scale
09:00 - The Challenge of Testing: From A/B Tests to Biotech Labs
10:52 - Creating an Automated, Scalable Scientific Method With AI
12:50 - A Timeline to AGI and ASI: Predictions for 2027–2030

Become a Member: https://danielmiessler.com/upgrade

See omnystudio.com/listener for privacy information.

  continue reading

100 つのエピソード

Artwork
iconシェア
 
Manage episode 475921971 series 3012020
コンテンツは Daniel Miessler によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Daniel Miessler またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal

The conversation around AGI and ASI is louder than ever—but the definitions are often abstract, technical, and disconnected from what actually matters. In this episode, I break down a human-centered way of thinking about these terms, why they’re important, and a system that could help us get there.

I talk about:

• A Better Definition of AGI and ASI
Instead of technical abstractions, AGI is defined as the ability to perform most cognitive tasks as well as a 2022 U.S.-based knowledge worker. ASI is intelligence that surpasses that level. Framing it this way helps us immediately understand why it matters—and what it threatens.

• Invention as the Core Output of Intelligence
The real value of AGI and ASI is their ability to generate novel solutions. Drawing inspiration from the Enlightenment, we explore how humans innovate—and how we can replicate that process using AI, automation, and structured experimentation.

• Scaling the Scientific Method with AI
By building systems that automate idea generation, recombination, and real-world testing, we can massively scale the rate of innovation. This framework—automated scientific iteration—could be the bridge from human intelligence to AGI and beyond.

Subscribe to the newsletter at:
https://danielmiessler.com/subscribe

Join the UL community at:
https://danielmiessler.com/upgrade

Follow on X:
https://x.com/danielmiessler

Follow on LinkedIn:
https://www.linkedin.com/in/danielmiessler
Chapters:

00:00 - Why AGI and ASI Definitions Should Be Human-Centric
01:55 - Defining AGI as a 2022-Era US Knowledge Worker
03:04 - Defining ASI and Why It’s Harder to Conceptualize
04:04 - The Real Reason to Care: AGI and ASI Enable Invention
05:04 - How Human Innovation Happens: Idea Collisions and Enlightenment Lessons
06:56 - Building a System That Mimics Human Idea Generation at Scale
09:00 - The Challenge of Testing: From A/B Tests to Biotech Labs
10:52 - Creating an Automated, Scalable Scientific Method With AI
12:50 - A Timeline to AGI and ASI: Predictions for 2027–2030

Become a Member: https://danielmiessler.com/upgrade

See omnystudio.com/listener for privacy information.

  continue reading

100 つのエピソード

Tutti gli episodi

×
 
Loading …

プレーヤーFMへようこそ!

Player FMは今からすぐに楽しめるために高品質のポッドキャストをウェブでスキャンしています。 これは最高のポッドキャストアプリで、Android、iPhone、そしてWebで動作します。 全ての端末で購読を同期するためにサインアップしてください。

 

クイックリファレンスガイド

探検しながらこの番組を聞いてください
再生