Artwork

コンテンツは The Data Flowcast によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、The Data Flowcast またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal
Player FM -ポッドキャストアプリ
Player FMアプリでオフラインにしPlayer FMう!

Scaling On-Prem Airflow With 2,000 DAGs at Numberly with Sébastien Crocquevieille

24:17
 
シェア
 

Manage episode 501484241 series 2948506
コンテンツは The Data Flowcast によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、The Data Flowcast またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal

Scaling 2,000+ data pipelines isn’t easy. But with the right tools and a self-hosted mindset, it becomes achievable.

In this episode, Sébastien Crocquevieille, Data Engineer at Numberly, unpacks how the team scaled their on-prem Airflow setup using open-source tooling and Kubernetes. We explore orchestration strategies, UI-driven stakeholder access and Airflow’s evolving features.

Key Takeaways:

00:00 Introduction.

02:13 Overview of the company’s operations and global presence.

04:00 The tech stack and structure of the data engineering team.

04:24 Running nearly 2,000 DAGs in production using Airflow.

05:42 How Airflow’s UI empowers stakeholders to self-serve and troubleshoot.

07:05 Details on the Kubernetes-based Airflow setup using Helm charts.

09:31 Transition from GitSync to NFS for DAG syncing due to performance issues.

14:11 Making every team member Airflow-literate through local installation.

17:56 Using custom libraries and plugins to extend Airflow functionality.

Resources Mentioned:

Sébastien Crocquevieille

https://www.linkedin.com/in/scroc/

Numberly | LinkedIn

https://www.linkedin.com/company/numberly/

Numberly | Website

https://numberly.com/

Apache Airflow

https://airflow.apache.org/

Grafana

https://grafana.com/

Apache Kafka

https://kafka.apache.org/

Helm Chart for Apache Airflow

https://airflow.apache.org/docs/helm-chart/stable/index.html

Kubernetes

https://kubernetes.io/

GitLab

https://about.gitlab.com/

KubernetesPodOperator – Airflow

https://airflow.apache.org/docs/apache-airflow-providers-cncf-kubernetes/stable/operators.html

Beyond Analytics Conference

https://astronomer.io/beyond/dataflowcast

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

81 つのエピソード

Artwork
iconシェア
 
Manage episode 501484241 series 2948506
コンテンツは The Data Flowcast によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、The Data Flowcast またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal

Scaling 2,000+ data pipelines isn’t easy. But with the right tools and a self-hosted mindset, it becomes achievable.

In this episode, Sébastien Crocquevieille, Data Engineer at Numberly, unpacks how the team scaled their on-prem Airflow setup using open-source tooling and Kubernetes. We explore orchestration strategies, UI-driven stakeholder access and Airflow’s evolving features.

Key Takeaways:

00:00 Introduction.

02:13 Overview of the company’s operations and global presence.

04:00 The tech stack and structure of the data engineering team.

04:24 Running nearly 2,000 DAGs in production using Airflow.

05:42 How Airflow’s UI empowers stakeholders to self-serve and troubleshoot.

07:05 Details on the Kubernetes-based Airflow setup using Helm charts.

09:31 Transition from GitSync to NFS for DAG syncing due to performance issues.

14:11 Making every team member Airflow-literate through local installation.

17:56 Using custom libraries and plugins to extend Airflow functionality.

Resources Mentioned:

Sébastien Crocquevieille

https://www.linkedin.com/in/scroc/

Numberly | LinkedIn

https://www.linkedin.com/company/numberly/

Numberly | Website

https://numberly.com/

Apache Airflow

https://airflow.apache.org/

Grafana

https://grafana.com/

Apache Kafka

https://kafka.apache.org/

Helm Chart for Apache Airflow

https://airflow.apache.org/docs/helm-chart/stable/index.html

Kubernetes

https://kubernetes.io/

GitLab

https://about.gitlab.com/

KubernetesPodOperator – Airflow

https://airflow.apache.org/docs/apache-airflow-providers-cncf-kubernetes/stable/operators.html

Beyond Analytics Conference

https://astronomer.io/beyond/dataflowcast

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

81 つのエピソード

ทุกตอน

×
 
Loading …

プレーヤーFMへようこそ!

Player FMは今からすぐに楽しめるために高品質のポッドキャストをウェブでスキャンしています。 これは最高のポッドキャストアプリで、Android、iPhone、そしてWebで動作します。 全ての端末で購読を同期するためにサインアップしてください。

 

クイックリファレンスガイド

探検しながらこの番組を聞いてください
再生