Artwork

コンテンツは Jon Krohn によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Jon Krohn またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal
Player FM -ポッドキャストアプリ
Player FMアプリでオフラインにしPlayer FMう!

813: Solving Business Problems Optimally with Data, with Jerry Yurchisin

1:43:30
 
シェア
 

Manage episode 436470661 series 2532807
コンテンツは Jon Krohn によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Jon Krohn またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal

Jerry Yurchisin from Gurobi joins Jon Krohn to break down mathematical optimization, showing why it often outshines machine learning for real-world challenges. Find out how innovations like NVIDIA’s latest CPUs are speeding up solutions to problems like the Traveling Salesman in seconds.

Interested in sponsoring a SuperDataScience Podcast episode? Email natalie@superdatascience.com for sponsorship information.

In this episode you will learn:

• The Burrito Optimization Game and mathematical optimization use cases [03:36]

• Key differences between machine learning and mathematical optimization [05:45]

• How mathematical optimization is ideal for real-world constraints [13:50]

• Gurobi’s APIs and the ease of integrating them [21:33]

• How LLMs like GPT-4 can help with optimization problems [39:39]

• Why integer variables are so complex to model [01:02:37]

• NP-hard problems [01:11:01]

• The history of optimization and its early applications [01:26:23]

Additional materials: www.superdatascience.com/813

  continue reading

909 つのエピソード

Artwork
iconシェア
 
Manage episode 436470661 series 2532807
コンテンツは Jon Krohn によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Jon Krohn またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal

Jerry Yurchisin from Gurobi joins Jon Krohn to break down mathematical optimization, showing why it often outshines machine learning for real-world challenges. Find out how innovations like NVIDIA’s latest CPUs are speeding up solutions to problems like the Traveling Salesman in seconds.

Interested in sponsoring a SuperDataScience Podcast episode? Email natalie@superdatascience.com for sponsorship information.

In this episode you will learn:

• The Burrito Optimization Game and mathematical optimization use cases [03:36]

• Key differences between machine learning and mathematical optimization [05:45]

• How mathematical optimization is ideal for real-world constraints [13:50]

• Gurobi’s APIs and the ease of integrating them [21:33]

• How LLMs like GPT-4 can help with optimization problems [39:39]

• Why integer variables are so complex to model [01:02:37]

• NP-hard problems [01:11:01]

• The history of optimization and its early applications [01:26:23]

Additional materials: www.superdatascience.com/813

  continue reading

909 つのエピソード

すべてのエピソード

×
 
Loading …

プレーヤーFMへようこそ!

Player FMは今からすぐに楽しめるために高品質のポッドキャストをウェブでスキャンしています。 これは最高のポッドキャストアプリで、Android、iPhone、そしてWebで動作します。 全ての端末で購読を同期するためにサインアップしてください。

 

クイックリファレンスガイド