Artwork

コンテンツは Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal
Player FM -ポッドキャストアプリ
Player FMアプリでオフラインにしPlayer FMう!

How Can Data Science Solve Cybersecurity Challenges?

1:00:01
 
シェア
 

Manage episode 359344658 series 1264075
コンテンツは Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal

In this webcast, Tom Scanlon, Matthew Walsh and Jeffrey Mellon discuss approaches to using data science and machine learning to address cybersecurity challenges. They provide an overview of data science, including a discussion of what constitutes a good problem to solve with data science. They also discuss applying data science to cybersecurity challenges, highlighting specific challenges such as detecting advanced persistent threats (APTs), assessing risk and trust, determining the authenticity of digital content, and detecting deepfakes.

What attendees will learn:

  • Basics of data science and what makes for a good data science problem
  • How data science techniques can be applied to cybersecurity
  • Ways to get started using data science to address cybersecurity challenges
  continue reading

174 つのエピソード

Artwork
iconシェア
 
Manage episode 359344658 series 1264075
コンテンツは Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal

In this webcast, Tom Scanlon, Matthew Walsh and Jeffrey Mellon discuss approaches to using data science and machine learning to address cybersecurity challenges. They provide an overview of data science, including a discussion of what constitutes a good problem to solve with data science. They also discuss applying data science to cybersecurity challenges, highlighting specific challenges such as detecting advanced persistent threats (APTs), assessing risk and trust, determining the authenticity of digital content, and detecting deepfakes.

What attendees will learn:

  • Basics of data science and what makes for a good data science problem
  • How data science techniques can be applied to cybersecurity
  • Ways to get started using data science to address cybersecurity challenges
  continue reading

174 つのエピソード

すべてのエピソード

×
 
Loading …

プレーヤーFMへようこそ!

Player FMは今からすぐに楽しめるために高品質のポッドキャストをウェブでスキャンしています。 これは最高のポッドキャストアプリで、Android、iPhone、そしてWebで動作します。 全ての端末で購読を同期するためにサインアップしてください。

 

クイックリファレンスガイド

探検しながらこの番組を聞いてください
再生