Artwork

コンテンツは Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal
Player FM -ポッドキャストアプリ
Player FMアプリでオフラインにしPlayer FMう!

Can You Rely on Your AI? Applying the AIR Tool to Improve Classifier Performance

38:50
 
シェア
 

Manage episode 421358557 series 1264075
コンテンツは Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal

Modern analytic methods, including artificial intelligence (AI) and machine learning (ML) classifiers, depend on correlations; however, such approaches fail to account for confounding in the data, which prevents accurate modeling of cause and effect and often leads to prediction bias. The Software Engineering Institute (SEI) has developed a new AI Robustness (AIR) tool that allows users to gauge AI and ML classifier performance with unprecedented confidence. This project is sponsored by the Office of the Under Secretary of Defense for Research and Engineering to transition use of our AIR tool to AI users across the Department of Defense. During the webcast, the research team will hold a panel discussion on the AIR tool and discuss opportunities for collaboration. Our team efforts focus strongly on transition and provide guidance, training, and software that put our transition collaborators on a path to successful adoption of this technology to meet their AI/ML evaluation needs.

What Attendees Will Learn:

• How AIR adds analytical capability that didn't previously exist, enabling an analysis to characterize and measure the overall accuracy of the AI as the underlying environment changes

• Examples of the AIR process and results from causal discovery to causal identification to causal inference • Opportunities for partnership and collaboration

  continue reading

174 つのエピソード

Artwork
iconシェア
 
Manage episode 421358557 series 1264075
コンテンツは Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal

Modern analytic methods, including artificial intelligence (AI) and machine learning (ML) classifiers, depend on correlations; however, such approaches fail to account for confounding in the data, which prevents accurate modeling of cause and effect and often leads to prediction bias. The Software Engineering Institute (SEI) has developed a new AI Robustness (AIR) tool that allows users to gauge AI and ML classifier performance with unprecedented confidence. This project is sponsored by the Office of the Under Secretary of Defense for Research and Engineering to transition use of our AIR tool to AI users across the Department of Defense. During the webcast, the research team will hold a panel discussion on the AIR tool and discuss opportunities for collaboration. Our team efforts focus strongly on transition and provide guidance, training, and software that put our transition collaborators on a path to successful adoption of this technology to meet their AI/ML evaluation needs.

What Attendees Will Learn:

• How AIR adds analytical capability that didn't previously exist, enabling an analysis to characterize and measure the overall accuracy of the AI as the underlying environment changes

• Examples of the AIR process and results from causal discovery to causal identification to causal inference • Opportunities for partnership and collaboration

  continue reading

174 つのエピソード

All episodes

×
 
Loading …

プレーヤーFMへようこそ!

Player FMは今からすぐに楽しめるために高品質のポッドキャストをウェブでスキャンしています。 これは最高のポッドキャストアプリで、Android、iPhone、そしてWebで動作します。 全ての端末で購読を同期するためにサインアップしてください。

 

クイックリファレンスガイド

探検しながらこの番組を聞いてください
再生