Africa-focused technology, digital and innovation ecosystem insight and commentary.
…
continue reading
コンテンツは Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal。
Player FM -ポッドキャストアプリ
Player FMアプリでオフラインにしPlayer FMう!
Player FMアプリでオフラインにしPlayer FMう!
A Reality Check on AI-Driven Medical Assistants
Manage episode 267650792 series 74115
コンテンツは Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal。
The data science and artificial intelligence community has made amazing strides in the past few years to algorithmically automate portions of the healthcare process. This episode looks at two computer vision algorithms, one that diagnoses diabetic retinopathy and another that classifies liver cancer, and asks the question—are patients now getting better care, and achieving better outcomes, with these algorithms in the mix? The answer isn’t no, exactly, but it’s not a resounding yes, because these algorithms interact with a very complex system (the healthcare system) and other shortcomings of that system are proving hard to automate away. Getting a faster diagnosis from an image might not be an improvement if the image is now harder to capture (because of strict data quality requirements associated with the algorithm that wouldn’t stop a human doing the same job). Likewise, an algorithm getting a prediction mostly correct might not be an overall benefit if it introduces more dramatic failures when the prediction happens to be wrong. For every data scientist whose work is deployed into some kind of product, and is being used to solve real-world problems, these papers underscore how important and difficult it is to consider all the context around those problems.
…
continue reading
293 つのエピソード
Manage episode 267650792 series 74115
コンテンツは Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal。
The data science and artificial intelligence community has made amazing strides in the past few years to algorithmically automate portions of the healthcare process. This episode looks at two computer vision algorithms, one that diagnoses diabetic retinopathy and another that classifies liver cancer, and asks the question—are patients now getting better care, and achieving better outcomes, with these algorithms in the mix? The answer isn’t no, exactly, but it’s not a resounding yes, because these algorithms interact with a very complex system (the healthcare system) and other shortcomings of that system are proving hard to automate away. Getting a faster diagnosis from an image might not be an improvement if the image is now harder to capture (because of strict data quality requirements associated with the algorithm that wouldn’t stop a human doing the same job). Likewise, an algorithm getting a prediction mostly correct might not be an overall benefit if it introduces more dramatic failures when the prediction happens to be wrong. For every data scientist whose work is deployed into some kind of product, and is being used to solve real-world problems, these papers underscore how important and difficult it is to consider all the context around those problems.
…
continue reading
293 つのエピソード
すべてのエピソード
×プレーヤーFMへようこそ!
Player FMは今からすぐに楽しめるために高品質のポッドキャストをウェブでスキャンしています。 これは最高のポッドキャストアプリで、Android、iPhone、そしてWebで動作します。 全ての端末で購読を同期するためにサインアップしてください。