Artwork

コンテンツは Claire Vo によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Claire Vo またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal
Player FM -ポッドキャストアプリ
Player FMアプリでオフラインにしPlayer FMう!

Successfully coding with AI in large enterprises: Centralized rules, workflows for tech debt, and training your team | Zach Davis (Director of Engineering at LaunchDarkly)

44:56
 
シェア
 

Manage episode 495654657 series 3660816
コンテンツは Claire Vo によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Claire Vo またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal

Zach Davis is a product-minded engineering leader and builder at heart, with over 12 years of experience building high‑performing teams and crafting developer tools at companies like Atlassian and LaunchDarkly. In this episode, he shares how he’s helping his 100-plus-person engineering team successfully adopt AI tools by creating centralized documentation, using agents to tackle technical debt, and improving hiring processes—all while maintaining high quality standards in a mature codebase.

What you’ll learn:

1. How to create a centralized rules system that works across multiple AI tools instead of duplicating documentation

2. A systematic approach to using AI agents like Devin and Cursor to analyze and reduce test noise in large codebases

3. How to leverage AI tools to document your codebase more effectively by extracting knowledge from existing sources

4. Why “what’s good for humans is also good for LLMs” should guide your documentation strategy

5. A custom GPT workflow for improving interview feedback quality and coaching interviewers

6. How to approach tech debt reduction with AI by creating prioritized task lists that both humans and AI agents can work from

Brought to you by:

WorkOS—Make your app enterprise-ready today

Lenny’s List on Maven—Hands-on AI education curated by Lenny and Claire

Where to find Zach Davis:

LaunchDarkly: https://www.launchdarkly.com

LinkedIn: https://www.linkedin.com/in/zach-davis-28207195/

Where to find Claire Vo:

ChatPRD: https://www.chatprd.ai/

Website: https://clairevo.com/

LinkedIn: https://www.linkedin.com/in/clairevo/

X: https://x.com/clairevo

In this episode, we cover:

(00:00) Introduction to Zach Davis

(02:44) Overview of AI tools used at LaunchDarkly

(04:00) The importance of having someone responsible for driving AI adoption

(05:44) Why vibe coding isn’t acceptable for enterprise development

(06:42) Making engineers successful with AI on their first attempt

(07:55) Creating centralized documentation for both humans and AI agents

(10:19) Using feature flagging rules to improve AI outputs

(12:33) Advice for getting started with rules

(14:28) Demo: Setting up Devin’s environment in a large codebase

(24:33) Devin’s plan overview

(27:55) Demo: Creating a prioritized tech debt reduction plan

(36:40) Demo: Using AI to improve hiring processes and interview feedback

(40:34) Summary of key approaches for integrating AI into engineering workflows

(42:08) Lightning round and final thoughts

Tools referenced:

• Cursor: https://www.cursor.com/

• Devin: https://devin.ai/

• ChatGPT: https://chat.openai.com/

• Claude: https://claude.ai/

• Windsurf: https://windsurf.com/

• Lovable: https://lovable.dev/

• v0: https://v0.dev/

• ChatPRD: https://www.chatprd.ai/

• Figma: https://www.figma.com/

• GitHub Copilot: https://github.com/features/copilot

Other references:

• Jest: https://jestjs.io/

• Vitest: https://vitest.dev/

• MCP: https://www.anthropic.com/news/model-context-protocol

• Confluence: https://www.atlassian.com/software/confluence

Production and marketing by https://penname.co/. For inquiries about sponsoring the podcast, email [email protected].

  continue reading

41 つのエピソード

Artwork
iconシェア
 
Manage episode 495654657 series 3660816
コンテンツは Claire Vo によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Claire Vo またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal

Zach Davis is a product-minded engineering leader and builder at heart, with over 12 years of experience building high‑performing teams and crafting developer tools at companies like Atlassian and LaunchDarkly. In this episode, he shares how he’s helping his 100-plus-person engineering team successfully adopt AI tools by creating centralized documentation, using agents to tackle technical debt, and improving hiring processes—all while maintaining high quality standards in a mature codebase.

What you’ll learn:

1. How to create a centralized rules system that works across multiple AI tools instead of duplicating documentation

2. A systematic approach to using AI agents like Devin and Cursor to analyze and reduce test noise in large codebases

3. How to leverage AI tools to document your codebase more effectively by extracting knowledge from existing sources

4. Why “what’s good for humans is also good for LLMs” should guide your documentation strategy

5. A custom GPT workflow for improving interview feedback quality and coaching interviewers

6. How to approach tech debt reduction with AI by creating prioritized task lists that both humans and AI agents can work from

Brought to you by:

WorkOS—Make your app enterprise-ready today

Lenny’s List on Maven—Hands-on AI education curated by Lenny and Claire

Where to find Zach Davis:

LaunchDarkly: https://www.launchdarkly.com

LinkedIn: https://www.linkedin.com/in/zach-davis-28207195/

Where to find Claire Vo:

ChatPRD: https://www.chatprd.ai/

Website: https://clairevo.com/

LinkedIn: https://www.linkedin.com/in/clairevo/

X: https://x.com/clairevo

In this episode, we cover:

(00:00) Introduction to Zach Davis

(02:44) Overview of AI tools used at LaunchDarkly

(04:00) The importance of having someone responsible for driving AI adoption

(05:44) Why vibe coding isn’t acceptable for enterprise development

(06:42) Making engineers successful with AI on their first attempt

(07:55) Creating centralized documentation for both humans and AI agents

(10:19) Using feature flagging rules to improve AI outputs

(12:33) Advice for getting started with rules

(14:28) Demo: Setting up Devin’s environment in a large codebase

(24:33) Devin’s plan overview

(27:55) Demo: Creating a prioritized tech debt reduction plan

(36:40) Demo: Using AI to improve hiring processes and interview feedback

(40:34) Summary of key approaches for integrating AI into engineering workflows

(42:08) Lightning round and final thoughts

Tools referenced:

• Cursor: https://www.cursor.com/

• Devin: https://devin.ai/

• ChatGPT: https://chat.openai.com/

• Claude: https://claude.ai/

• Windsurf: https://windsurf.com/

• Lovable: https://lovable.dev/

• v0: https://v0.dev/

• ChatPRD: https://www.chatprd.ai/

• Figma: https://www.figma.com/

• GitHub Copilot: https://github.com/features/copilot

Other references:

• Jest: https://jestjs.io/

• Vitest: https://vitest.dev/

• MCP: https://www.anthropic.com/news/model-context-protocol

• Confluence: https://www.atlassian.com/software/confluence

Production and marketing by https://penname.co/. For inquiries about sponsoring the podcast, email [email protected].

  continue reading

41 つのエピソード

All episodes

×
 
Loading …

プレーヤーFMへようこそ!

Player FMは今からすぐに楽しめるために高品質のポッドキャストをウェブでスキャンしています。 これは最高のポッドキャストアプリで、Android、iPhone、そしてWebで動作します。 全ての端末で購読を同期するためにサインアップしてください。

 

クイックリファレンスガイド

探検しながらこの番組を聞いてください
再生