Artwork

コンテンツは Arize AI によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Arize AI またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal
Player FM -ポッドキャストアプリ
Player FMアプリでオフラインにしPlayer FMう!

Training Large Language Models to Reason in Continuous Latent Space

24:58
 
シェア
 

Manage episode 461129295 series 3448051
コンテンツは Arize AI によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Arize AI またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal

LLMs have typically been restricted to reason in the "language space," where chain-of-thought (CoT) is used to solve complex reasoning problems. But a new paper argues that language space may not always be the best for reasoning. In this paper read, we cover an exciting new technique from a team at Meta called Chain of Continuous Thought—also known as "Coconut." In the paper, "Training Large Language Models to Reason in a Continuous Latent Space" explores the potential of allowing LLMs to reason in an unrestricted latent space instead of being constrained by natural language tokens.
Read a full breakdown of Coconut on our blog

Learn more about AI observability and evaluation in our course, join the Arize AI Slack community or get the latest on LinkedIn and X.

  continue reading

41 つのエピソード

Artwork
iconシェア
 
Manage episode 461129295 series 3448051
コンテンツは Arize AI によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Arize AI またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal

LLMs have typically been restricted to reason in the "language space," where chain-of-thought (CoT) is used to solve complex reasoning problems. But a new paper argues that language space may not always be the best for reasoning. In this paper read, we cover an exciting new technique from a team at Meta called Chain of Continuous Thought—also known as "Coconut." In the paper, "Training Large Language Models to Reason in a Continuous Latent Space" explores the potential of allowing LLMs to reason in an unrestricted latent space instead of being constrained by natural language tokens.
Read a full breakdown of Coconut on our blog

Learn more about AI observability and evaluation in our course, join the Arize AI Slack community or get the latest on LinkedIn and X.

  continue reading

41 つのエピソード

すべてのエピソード

×
 
Loading …

プレーヤーFMへようこそ!

Player FMは今からすぐに楽しめるために高品質のポッドキャストをウェブでスキャンしています。 これは最高のポッドキャストアプリで、Android、iPhone、そしてWebで動作します。 全ての端末で購読を同期するためにサインアップしてください。

 

クイックリファレンスガイド

探検しながらこの番組を聞いてください
再生