Artwork

コンテンツは Alex Molak によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Alex Molak またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal
Player FM -ポッドキャストアプリ
Player FMアプリでオフラインにしPlayer FMう!

Causal AI, Effect Heterogeneity & Understanding ML || Alicia Curth || Causal Bandits Ep. 006 (2023)

55:27
 
シェア
 

Manage episode 391957032 series 3526805
コンテンツは Alex Molak によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Alex Molak またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal

Send us a text

Support the show
Video version available on YouTube
Recorded on Nov 29, 2023 in Cambridge, UK

Should we continue to ask why?
Alicia's machine learning journey began with... causal machine learning.
Starting with econometrics, she discovered semi-parametric methods and the Pearlian framework at later stages of her career and incorporated both in her everyday toolkit.
She loves to understand why things work, which inspires her to ask "why" not only in the context of treatment effects, but also in the context of general machine learning. Her papers on heterogeneous treatment effect estimators and model evaluation bring unique perspectives to the community.
Her recent NeurIPS paper on double descent aims at bridging the gap between statistical learning theory and a counter-intuitive phenomenon of double descent observed in complex machine learning architectures.
Ready to dive in? ------------------------------------------------------------------------------------------------------ About The Guest
Alicia Curth is a Machine Learning Researcher and a final year PhD student at The van der Schaar Lab at Cambridge University. Her research is focused on causality, understanding machine learning methods from ground up and personalized medicine. Her works are frequently accepted at best machine learning conferences (she's a true serial NeurIPS author).
Connect with Alicia:
- Alicia on Twitter/X
- Alicia on LinkedIn
- Alicia 's web page
About The Host
Aleksander (Alex) Molak is an independent machine learning researcher, educator, entrepreneur and a best-selling author in the area of causality.
Connect with Alex: - Alex on the Internet
Link

Rumi.ai
All-in-one meeting tool with real-time transcription & searchable Meeting Memory™
Support the show

Causal Bandits Podcast
Causal AI || Causal Machine Learning || Causal Inference & Discovery
Web: https://causalbanditspodcast.com
Connect on LinkedIn: https://www.linkedin.com/in/aleksandermolak/
Join Causal Python Weekly: https://causalpython.io
The Causal Book: https://amzn.to/3QhsRz4

  continue reading

1. Causal AI, Effect Heterogeneity & Understanding ML || Alicia Curth || Causal Bandits Ep. 006 (2023) (00:00:00)

2. [Ad] Rumi.ai (00:14:06)

3. (Cont.) Causal AI, Effect Heterogeneity & Understanding ML || Alicia Curth || Causal Bandits Ep. 006 (2023) (00:14:55)

27 つのエピソード

Artwork
iconシェア
 
Manage episode 391957032 series 3526805
コンテンツは Alex Molak によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Alex Molak またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal

Send us a text

Support the show
Video version available on YouTube
Recorded on Nov 29, 2023 in Cambridge, UK

Should we continue to ask why?
Alicia's machine learning journey began with... causal machine learning.
Starting with econometrics, she discovered semi-parametric methods and the Pearlian framework at later stages of her career and incorporated both in her everyday toolkit.
She loves to understand why things work, which inspires her to ask "why" not only in the context of treatment effects, but also in the context of general machine learning. Her papers on heterogeneous treatment effect estimators and model evaluation bring unique perspectives to the community.
Her recent NeurIPS paper on double descent aims at bridging the gap between statistical learning theory and a counter-intuitive phenomenon of double descent observed in complex machine learning architectures.
Ready to dive in? ------------------------------------------------------------------------------------------------------ About The Guest
Alicia Curth is a Machine Learning Researcher and a final year PhD student at The van der Schaar Lab at Cambridge University. Her research is focused on causality, understanding machine learning methods from ground up and personalized medicine. Her works are frequently accepted at best machine learning conferences (she's a true serial NeurIPS author).
Connect with Alicia:
- Alicia on Twitter/X
- Alicia on LinkedIn
- Alicia 's web page
About The Host
Aleksander (Alex) Molak is an independent machine learning researcher, educator, entrepreneur and a best-selling author in the area of causality.
Connect with Alex: - Alex on the Internet
Link

Rumi.ai
All-in-one meeting tool with real-time transcription & searchable Meeting Memory™
Support the show

Causal Bandits Podcast
Causal AI || Causal Machine Learning || Causal Inference & Discovery
Web: https://causalbanditspodcast.com
Connect on LinkedIn: https://www.linkedin.com/in/aleksandermolak/
Join Causal Python Weekly: https://causalpython.io
The Causal Book: https://amzn.to/3QhsRz4

  continue reading

1. Causal AI, Effect Heterogeneity & Understanding ML || Alicia Curth || Causal Bandits Ep. 006 (2023) (00:00:00)

2. [Ad] Rumi.ai (00:14:06)

3. (Cont.) Causal AI, Effect Heterogeneity & Understanding ML || Alicia Curth || Causal Bandits Ep. 006 (2023) (00:14:55)

27 つのエピソード

Minden epizód

×
 
Loading …

プレーヤーFMへようこそ!

Player FMは今からすぐに楽しめるために高品質のポッドキャストをウェブでスキャンしています。 これは最高のポッドキャストアプリで、Android、iPhone、そしてWebで動作します。 全ての端末で購読を同期するためにサインアップしてください。

 

クイックリファレンスガイド