Artwork

コンテンツは Alex Molak によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Alex Molak またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal
Player FM -ポッドキャストアプリ
Player FMアプリでオフラインにしPlayer FMう!

Causality, Bayesian Modeling and PyMC || Thomas Wiecki || Causal Bandits Ep. 001 (2023)

59:03
 
シェア
 

Manage episode 382491662 series 3526805
コンテンツは Alex Molak によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Alex Molak またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal

Send us a text

Support the show
Video version of this episode is available on YouTube
Recorded on Aug 24, 2023 in Berlin, Germany
Does Causality Align with Bayesian Modeling?
Structural causal models share a conceptual similarity with the models used in probabilistic programming.
However, there are important theoretical differences between the two. Can we bridge them in practice?
In this episode, we explore Thomas' journey into causality and discuss how his experience in Bayesian modeling accelerated his understanding of basic causal concepts.
We delve into new causally-oriented developments in PyMC - an open-source Python probabilistic programming framework co-authored by Thomas - and discuss practical aspects of causal modeling drawing from Thomas' experience.
"It's great to be wrong, and this is how we learn" - says Thomas, emphasizing the gradual and iterative nature of his and his team's successful projects.
Further down the road, we take a look at the opportunities and challenges in uncertainty quantification, briefly discussing probabilistic programming, Bayesian deep learning and conformal prediction perspectives.
Lastly, Thomas shares his personal journey from studying computer science, bioinformatics, and neuroscience, to becoming a major open-source contributor and an independent entrepreneur.
Ready to dive in?
About The Guest
Thomas Wiecki, Phd is a co-author of PyMC - one of the most recognizable Python probabilistic programming frameworks - and the CEO of PyMC Labs.
Connect with Thomas:

About The Host
Aleksander (Alex) Molak is an independent machine learning researcher, educator, entrepreneur and a best-selling author in the area of causality.
Con

Rumi.ai
All-in-one meeting tool with real-time transcription & searchable Meeting Memory™
Support the show

Causal Bandits Podcast
Causal AI || Causal Machine Learning || Causal Inference & Discovery
Web: https://causalbanditspodcast.com
Connect on LinkedIn: https://www.linkedin.com/in/aleksandermolak/
Join Causal Python Weekly: https://causalpython.io
The Causal Book: https://amzn.to/3QhsRz4

  continue reading

1. Causality, Bayesian Modeling and PyMC || Thomas Wiecki || Causal Bandits Ep. 001 (2023) (00:00:00)

2. [Ad] Rumi.ai (00:17:02)

3. (Cont.) Causality, Bayesian Modeling and PyMC || Thomas Wiecki || Causal Bandits Ep. 001 (2023) (00:17:51)

27 つのエピソード

Artwork
iconシェア
 
Manage episode 382491662 series 3526805
コンテンツは Alex Molak によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、Alex Molak またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal

Send us a text

Support the show
Video version of this episode is available on YouTube
Recorded on Aug 24, 2023 in Berlin, Germany
Does Causality Align with Bayesian Modeling?
Structural causal models share a conceptual similarity with the models used in probabilistic programming.
However, there are important theoretical differences between the two. Can we bridge them in practice?
In this episode, we explore Thomas' journey into causality and discuss how his experience in Bayesian modeling accelerated his understanding of basic causal concepts.
We delve into new causally-oriented developments in PyMC - an open-source Python probabilistic programming framework co-authored by Thomas - and discuss practical aspects of causal modeling drawing from Thomas' experience.
"It's great to be wrong, and this is how we learn" - says Thomas, emphasizing the gradual and iterative nature of his and his team's successful projects.
Further down the road, we take a look at the opportunities and challenges in uncertainty quantification, briefly discussing probabilistic programming, Bayesian deep learning and conformal prediction perspectives.
Lastly, Thomas shares his personal journey from studying computer science, bioinformatics, and neuroscience, to becoming a major open-source contributor and an independent entrepreneur.
Ready to dive in?
About The Guest
Thomas Wiecki, Phd is a co-author of PyMC - one of the most recognizable Python probabilistic programming frameworks - and the CEO of PyMC Labs.
Connect with Thomas:

About The Host
Aleksander (Alex) Molak is an independent machine learning researcher, educator, entrepreneur and a best-selling author in the area of causality.
Con

Rumi.ai
All-in-one meeting tool with real-time transcription & searchable Meeting Memory™
Support the show

Causal Bandits Podcast
Causal AI || Causal Machine Learning || Causal Inference & Discovery
Web: https://causalbanditspodcast.com
Connect on LinkedIn: https://www.linkedin.com/in/aleksandermolak/
Join Causal Python Weekly: https://causalpython.io
The Causal Book: https://amzn.to/3QhsRz4

  continue reading

1. Causality, Bayesian Modeling and PyMC || Thomas Wiecki || Causal Bandits Ep. 001 (2023) (00:00:00)

2. [Ad] Rumi.ai (00:17:02)

3. (Cont.) Causality, Bayesian Modeling and PyMC || Thomas Wiecki || Causal Bandits Ep. 001 (2023) (00:17:51)

27 つのエピソード

Tất cả các tập

×
 
Loading …

プレーヤーFMへようこそ!

Player FMは今からすぐに楽しめるために高品質のポッドキャストをウェブでスキャンしています。 これは最高のポッドキャストアプリで、Android、iPhone、そしてWebで動作します。 全ての端末で購読を同期するためにサインアップしてください。

 

クイックリファレンスガイド