Artwork

コンテンツは O'Reilly Media によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、O'Reilly Media またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal
Player FM -ポッドキャストアプリ
Player FMアプリでオフラインにしPlayer FMう!

Katharine Jarmul on using Python for data analysis

26:17
 
シェア
 

Manage episode 192583113 series 1433313
コンテンツは O'Reilly Media によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、O'Reilly Media またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal

The O’Reilly Programming Podcast: Wrangling data with Python’s libraries and packages.

In this episode of the O’Reilly Programming Podcast, I talk with Katharine Jarmul, a Python developer and data analyst whose company, Kjamistan, provides consulting and training on topics surrounding machine learning, natural language processing, and data testing. Jarmul is the co-author (along with Jacqueline Kazil) of the O’Reilly book Data Wrangling with Python, and she has presented the live online training course Practical Data Cleaning with Python.

Discussion points:

  • How data wrangling enables you to take real-world data and “clean it, organize it, validate it, and put it in some format you can actually work with,” says Jarmul.
  • Why Python has become a preferred language for use in data science: Jarmul cites the accessibility of the language and the emergence of packages such as NumPy, pandas, SciPy, and scikit-learn.
  • Jarmul calls pandas “Excel on steroids” and says, “it allows you to manipulate tabular data, and transform it quite easily. For anyone using structured, tabular data, you can’t go wrong with doing some part of your analysis in pandas.”
  • She cites gensim and spaCy as her favorite NLP Python libraries, praising them for “the ability to just install a library and have it do quite a lot of deep learning or machine learning tasks for you.”

Other links:

  continue reading

25 つのエピソード

Artwork
iconシェア
 
Manage episode 192583113 series 1433313
コンテンツは O'Reilly Media によって提供されます。エピソード、グラフィック、ポッドキャストの説明を含むすべてのポッドキャスト コンテンツは、O'Reilly Media またはそのポッドキャスト プラットフォーム パートナーによって直接アップロードされ、提供されます。誰かがあなたの著作物をあなたの許可なく使用していると思われる場合は、ここで概説されているプロセスに従うことができますhttps://ja.player.fm/legal

The O’Reilly Programming Podcast: Wrangling data with Python’s libraries and packages.

In this episode of the O’Reilly Programming Podcast, I talk with Katharine Jarmul, a Python developer and data analyst whose company, Kjamistan, provides consulting and training on topics surrounding machine learning, natural language processing, and data testing. Jarmul is the co-author (along with Jacqueline Kazil) of the O’Reilly book Data Wrangling with Python, and she has presented the live online training course Practical Data Cleaning with Python.

Discussion points:

  • How data wrangling enables you to take real-world data and “clean it, organize it, validate it, and put it in some format you can actually work with,” says Jarmul.
  • Why Python has become a preferred language for use in data science: Jarmul cites the accessibility of the language and the emergence of packages such as NumPy, pandas, SciPy, and scikit-learn.
  • Jarmul calls pandas “Excel on steroids” and says, “it allows you to manipulate tabular data, and transform it quite easily. For anyone using structured, tabular data, you can’t go wrong with doing some part of your analysis in pandas.”
  • She cites gensim and spaCy as her favorite NLP Python libraries, praising them for “the ability to just install a library and have it do quite a lot of deep learning or machine learning tasks for you.”

Other links:

  continue reading

25 つのエピソード

Tutti gli episodi

×
 
Loading …

プレーヤーFMへようこそ!

Player FMは今からすぐに楽しめるために高品質のポッドキャストをウェブでスキャンしています。 これは最高のポッドキャストアプリで、Android、iPhone、そしてWebで動作します。 全ての端末で購読を同期するためにサインアップしてください。

 

クイックリファレンスガイド

探検しながらこの番組を聞いてください
再生